Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron resonance fission neutron analysis for nondestructive fissile material assay

Hironaka, Kota; Lee, J.; Koizumi, Mitsuo; Ito, Fumiaki*; Hori, Junichi*; Terada, Kazushi*; Sano, Tadafumi*

Nuclear Instruments and Methods in Physics Research A, 1054, p.168467_1 - 168467_5, 2023/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

A New application technique of a position-sensitive liquid light guide Cerenkov counter for the simultaneous position detection of $$^{90}$$Sr/$$^{90}$$Y and $$^{137}$$Cs radioactivity

Terasaka, Yuta; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Measurements of the neutron total and capture cross sections and derivation of the resonance parameters of $$^{181}$$Ta

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto

Nuclear Science and Engineering, 18 Pages, 2023/00

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2022-033, 80 Pages, 2022/12

JAEA-Review-2022-033.pdf:4.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop an optical fiber type radiation sensor that can measure the radiation distribution one-dimensionally along the fiber under a high radiation field for the decommissioning of 1F. Based on the conventional time-of-flight method, we found several promising sensor candidates for the radiation distribution measurement under high dose rate and many scattered gamma-rays.

Journal Articles

Neutron capture and total cross-section measurements and resonance parameter analysis of niobium-93 below 400 eV

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Terada, Kazushi*; Meigo, Shinichiro; Toh, Yosuke; Segawa, Mariko; et al.

Journal of Nuclear Science and Technology, 59(3), p.318 - 333, 2022/03

 Times Cited Count:5 Percentile:65.59(Nuclear Science & Technology)

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2021-033, 55 Pages, 2021/12

JAEA-Review-2021-033.pdf:2.9MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2020. We are developing a one-dimensional optical fiber radiation sensor that can estimate the radioactive source distribution "along lines" instead of "at points". To improve the conventional time-of-flight optical fiber radiation sensor for the application under high dose rate environment, basic evaluation tests were conducted using various optical fibers with different diameters and materials.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2020-063, 44 Pages, 2021/01

JAEA-Review-2020-063.pdf:2.55MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2019.

Journal Articles

Measurement of thick target neutron yield at 180$$^{circ}$$ for a mercury target induced by 3-GeV protons

Matsuda, Hiroki; Iwamoto, Hiroki; Meigo, Shinichiro; Takeshita, Hayato*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 483, p.33 - 40, 2020/11

 Times Cited Count:3 Percentile:36.4(Instruments & Instrumentation)

A thick target neutron yield for a mercury target at an angle of 180$$^{circ}$$ from the incident beam direction is measured with the time-of-flight method using a 3-GeV proton beam at the Japan Proton Accelerator Research Complex (J-PARC). Comparing the experimental result with a Monte Carlo particle transport simulation by the Particle and Heavy Ion Transport code System (PHITS) shows that there are apparent discrepancies. We find that this trend is consistent with an experimental result of neutron-induced re- action rates obtained using indium and niobium activation foils. Comparing proton-induced neutron-production double-differential cross-sections for a lead target at backward directions between the PHITS calculation and experimental data suggests that the dis- crepancies for our experiments would be linked to the neutron production calculation around 3 GeV by the PHITS spallation model and/or the calculation of nonelastic cross-sections around 3 GeV in the particle transport simulation.

Journal Articles

Neutronic design of neutron moderator on a reentrant-hole configuration for Kyoto University Accelerator-based Neutron Source (KUANS)

Okita, Shoichiro; Tasaki, Seiji*; Abe, Yutaka*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(3), p.178 - 184, 2020/09

The Kyoto University Accelerator-based Neutron Source (KUANS) is a compact neutron source that is mainly used for spectrometer and detector development. In addition, it is also suited for experiments to study the neutronic design of moderators owing to the relatively low neutron generation yield by $$^{9}$$Be(p,n). We present a neutronic design of the neutron moderator on a reentrant-hole configuration for KUANS to enhance the neutron emission, and some experiments are conducted at KUANS for verification. A polyethylene moderator on a reentrant-hole configuration is designed by PHITS calculation and is introduced to KUANS to obtain intense oblong neutron beams. The intensity of the pulsed neutron beam is experimentally measured. The results reveal that the intensity becomes approximately 1.9 times stronger than that of the conventional rectangular design. In addition, the ratio of its intensity to the conventional intensity increases to approximately threefold as the neutron wavelength increases. It is interesting to note that the longer the neutron wavelength, the more efficiently they are extracted from the inside of the moderator owing to the existence of the reentrant-hole configuration.

Journal Articles

Neutron resonance analysis for nuclear safeguards and security applications

Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

EPJ Web of Conferences, 146, p.09002_1 - 09002_4, 2017/09

 Times Cited Count:9 Percentile:97.81(Nuclear Science & Technology)

Journal Articles

Experimental setup and procedure for the measurement of the $$^{7}$$Be(n, $$alpha$$)$$alpha$$ reaction at n_TOF

Cosentino, L.*; Musumarra, A.*; Barbagallo, M.*; Pappalardo, A.*; Harada, Hideo; Kimura, Atsushi; n_TOF Collaboration*; 126 of others*

Nuclear Instruments and Methods in Physics Research A, 830, p.197 - 205, 2016/09

 Times Cited Count:19 Percentile:86.84(Instruments & Instrumentation)

Journal Articles

The New vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance

Wei${ss}$, C.*; Chiaveri, E.*; Girod, S.*; Vlachoudis, V.*; Harada, Hideo; Kimura, Atsushi; n_TOF Collaboration*; 126 of others*

Nuclear Instruments and Methods in Physics Research A, 799, p.90 - 98, 2015/11

 Times Cited Count:76 Percentile:99.02(Instruments & Instrumentation)

Journal Articles

Technique of neutron resonance transmission analysis for active neutron NDA

Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Kureta, Masatoshi; Harada, Hideo; Seya, Michio; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.846 - 851, 2015/08

One of non-destructive techniques using neutron resonance reaction is neutron resonance transmission analysis (NRTA). We are presently developing a new active neutron non-destructive method including NRTA in order to detect and quantify special nuclear materials (SNMs) in nuclear fuels containing MA. We aim at applying the technique to not only particle-like debris but also other materials in high radiation field. For this aim, we make use of fruitful knowledge of neutron resonance densitometry (NRD) that was developed for particle-like debris in melted fuel. NRTA detects and quantifies SNMs by means of analyzing a neutron transmission spectrum via a resonance shape analysis. In this presentation, we explain the basic of NRTA and its role in the active neutron technique. Then, with knowledge obtained in the development of NRD, we discuss items to be investigated for NRTA in our active neutron technique.

Journal Articles

Generalized analysis method for neutron resonance transmission analysis

Harada, Hideo; Kimura, Atsushi; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi; Becker, B.*; Kopecky, S.*; Schillebeeckx, P.*

Journal of Nuclear Science and Technology, 52(6), p.837 - 843, 2015/06

 Times Cited Count:3 Percentile:25.85(Nuclear Science & Technology)

Journal Articles

Mechanism of state-specific enhancement in photon-stimulated desorption as studied using a polarization-dependent technique

Sekiguchi, Tetsuhiro; Baba, Yuji; Shimoyama, Iwao; Wu, G.*; Kitajima, Yoshinori*

Surface Science, 593(1-3), p.310 - 317, 2005/11

 Times Cited Count:2 Percentile:11.66(Chemistry, Physical)

Using a newly developed rotatable time-of-flight mass spectrometer(R-TOF-MS) and polarized synchrotron radiation, orientation effect on fragmentation and desorption pathways occurring at the top-most layers of molecular solids have been investigated. Reported will be polarization-angle dependencies of TOF mass spectra, high-resolution electron- and ion-NEXAFS in condensed chlorobenzene.

Journal Articles

Direct and indirect processes in photon-stimulated ion desorption from condensed formamide

Ikeura, Hiromi*; Sekiguchi, Tetsuhiro; Baba, Yuji; Imamura, Motoyasu*; Matsubayashi, Nobuyuki*; Shimada, Hiromichi*

Surface Science, 593(1-3), p.303 - 309, 2005/11

 Times Cited Count:5 Percentile:26.14(Chemistry, Physical)

no abstracts in English

Journal Articles

Generation and evaluation of a 10$$^{20}$$ W/cm$$^{2}$$ intensity by focusing wavefront corrected 100 TW, 10 Hz laser pulses

Akahane, Yutaka; Ma, J.; Fukuda, Yuji; Aoyama, Makoto; Kiriyama, Hiromitsu; Inoue, Norihiro*; Tsuji, Koichi*; Nakai, Yoshiki*; Yamamoto, Yoichi*; Sheldakova, J. V.*; et al.

Japanese Journal of Applied Physics, Part 1, 44(8), p.6087 - 6089, 2005/08

 Times Cited Count:1 Percentile:4.7(Physics, Applied)

An improvement of laser-focused peak intensity has been achieved in a JAERI 100 TW Ti:sapphire chirped-pulse amplifier chain with a feedback-controlled adaptive optics system. Measurements of optical parameters of the laser pulse and an experimental tunneling ionization ratio of a rare gas atom with laser energy scaling have practically confirmed an ultrarelativistic intensity of over 10$$^{20}$$ W/cm$$^{2}$$ operating at a 10 Hz repetition rate.

Journal Articles

Introduction of imaging detection into a time-of-flight mass spectrometer to improve the dynamic range in the isotope ratio measurement

Katayama, Atsushi; Furukawa, Katsutoshi; Watanabe, Kazuo

Bunseki Kagaku, 52(6), p.461 - 467, 2003/06

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

An imaging ion detection system was introduced to a time-of-flight mass spectrometer (TOFMS) in order to increase dynamic range in the isotope ratio measurements. The new detection system utilizes a position sensitive micro channel plate (MCP) with a phosphor plate and a CCD camera which records light spots on the MCP. Mass discriminated ion beams produced by laser resonance ionization were swept on the surface of MCP by a time-depended electric field located in front of the MCP. The resulting light spots were recorded as images by CCD camera. A mass spectrum was obtained from the images. The present method was applied to the isotope analysis of calcium. A dynamic range of more than 5 orders of magnitude was achieved.

Journal Articles

Orientation effect on phot-fragmentation and ion-desorption from the topmost layers of molecular solids

Sekiguchi, Tetsuhiro; Ikeura, Hiromi*; Baba, Yuji

Surface Science, 532-535(1-3), p.1079 - 1084, 2003/06

Using a newly developed rotatable time-of-flight mass spectrometer(R-TOF-MS) and polarized synchrotron radiation, we have investigated orientation effect on fragmentation and desorption pathways occurring at the top-most layers of molecular solids. Reported will be polarization-angle dependencies of TOF mass spectra, high-resolution electron- and ion-NEXAFS in condensed formic acid, formamide and benzene. For condensed formamide(HCOND$$_{2}$$), marked orientation effect was observed for the enhanced H$$^{+}$$-yields following C1s $$rightarrow$$ $$sigma$$*$$_{C-H}$$ resonance. Direct photodissociation and charge-neutralization play an important role in the effect. For some fragment species, however, the bond scission showed no polarization dependence when dissociation sites were far from core-excited atoms. This is the case for N-D scission and D$$^{+}$$-desorption following C1s excitation, suggesting that indirect process governs, where secondary electrons would induce the fragmentation.

Journal Articles

Rapid change of the neutral hydrogen energy distribution at the L/H transition in the JFT-2M tokamak

Miura, Yukitoshi; Okano, Fuminori; Suzuki, Norio; Mori, Masahiro; Hoshino, Katsumichi; Maeda, Hikosuke; Takizuka, Tomonori; JFT-2M Group; Ito, Sanae*; Ito, Kimitaka

Physical Review Letters, 69(15), p.2216 - 2219, 1992/10

 Times Cited Count:28 Percentile:78.66(Physics, Multidisciplinary)

no abstracts in English

31 (Records 1-20 displayed on this page)